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In this paper, a new unsupervised segmentation method is proposed. The method integrates
the star shape prior of the image object with salient point detection algorithm. In the
proposed method, the Harris salient point detection is first applied to the color image to
obtain the initial salient points. A regional contrast based saliency extraction method is then
used to select rough object regions in the image. To restrict the distribution of salient points,
an adaptive threshold segmentation is applied to the saliency map to get the saliency mask.
And then the salient region points can be obtained by placing the saliency mask on the initial
Harris salient points. In order to make sure the salient points which we get are inside the
image object thus the star shape constraint can be applied to the graph cuts segmentation,
the Affinity Propagation (AP) clustering is employed to find the salient key points among the
salient region points. Finally, these salient key points are regarded as foreground seeds and
the star shape prior is introduced to graph cuts segmentation framework to extract the
foreground object. Extensive experiments and comparisons on public database are provided
to demonstrate the good performance of the proposed method.

& 2014 Elsevier B.V. All rights reserved.
1. Introduction

Extracting foreground objects of interest from the
complex background is of great practical significance in
the research of computer vision, pattern recognition and
digital image processing. Due to the complexity of model-
ing a vast amount of visual patterns that appear in generic
n and National Key
ral Information Pro-
logy, Wuhan 430074,

).
images and the intrinsic ambiguities in image perception,
especially when there is no specific task to guide the
attention, image segmentation is found to be difficult and
challenging. A general purpose of the image segmentation
technique is that it should be able to accurately define the
desired object boundaries or regions. In general, existing
image segmentation algorithms can be divided into two
categories: interactive and automatic methods.

Over the past decades, interactive image segmentation
methods have been developed extensively and can be
classified into the boundary-based and region-based
methods [1]. Boundary-based methods segment the fore-
ground with the boundary information provided by the
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user. For example, intelligent scissors [2] allow a user to
roughly trace the object's boundary with a mouse, and the
segmentation result corresponds to the minimum cost
path from the cursor position back to the last given point.
Active Contours are a class of methods to detect the object
by optimizing the initial approximate boundary. The
evolution of the given boundary is achieved by optimizing
an energy function of image terms and intrinsic regular-
ization terms. Examples include snakes [3], active contours
[4], geodesic active contours [5] etc. Region-based meth-
ods require users to loosely hint the object and back-
ground respectively and then try to maintain a connection
of the boundary pixels in progress of segmentation. Magic
wand in Photoshop, intelligent paint [6] and marker
drawing [7] belong to this category. Boykov and Jolly [8]
proposed an effective algorithm for region-based interac-
tive segmentation using graph cuts. Its interactive opera-
tions are easy and consist of a few mouse-clicks to indicate
some pixels inside or outside the object of interest. A
boundary and region information based energy function is
then minimized subject to these applied constraints. The
global minimum is found by using a graph cut technique.
Tao et al. [43] proposed an interactive method based on
the variation model and graph cuts to partition the image
into multiple scenes. However, those interactive methods
use the image information separately in the process of
segmentation and often lead to poor segmentation results
for objects with weak edges, in clutter, or under occlusion.
Thus, accurate segmentation requires more interactions as
well as a higher computation cost.

To reduce interactions while obtaining more accurate
segmentation results, the shape prior was introduced into
the interactive image segmentation. Dambreville [9] inte-
grated the kernel principal component analysis (KPCA)
with shape priors in a geometric active contour (GAC)
framework. Yeo [10] presented a new variation model for
the level-set segmentation using statistical shape priors.
A number of algorithms using a parameterized template
for the object shape have been proposed for graph cuts
segmentation [11,12]. For a specific type of objects, these
methods should carry out a mass of statistical learning
to obtain the general shape feature information, which
increases the computation cost of segmentation. Slabaugh
[13] showed how to integrate an elliptical shape prior with
the graph cuts segmentation to deal with a certain class
of shapes called the elliptical shape. Das [14] presented a
similar method to incorporate the shape prior with a
graph cuts model for shapes defined as the compact shape.
Although these shape prior assumptions are beneficial to
segmentation, the explicit representation of an object is
restricted by the object shape that limits its application in
practice. Veksler [15] investigated a generic shape (called
the star shape prior) for the graph cuts segmentation. The
prior based on simple geometric properties is much more
generic than the previous shape constrains while the star
shaped objects are abundant in the nature world. Then
[16] extended a single point [15] to multiple points and the
Euclidean rays were replaced by geodesic paths.

Though interactive segmentation has been applied to
many problems, there are still many drawbacks. Because
of a large amount of information in images and their
unpredictable complexity, interactive segmentation is
tedious, time consuming and impractical, especially when
we handle long image sequences. In extremely complex
scenes, a great deal of user interactions is needed to obtain
a satisfactory result. The main limitations of the above-
mentioned segmentation methods are that we have to
do interactive operations and cannot achieve automatic
segmentation.

Automatic methods can provide segmentation results
without any user-interaction. One of main directions of
current researches is to define segmentation as an energy
function through a graph such as Ncut [17]. Besides graph
based methods, there are also other types of image
segmentation approaches that mix the features and
spatial information together, such as the mean shift [18],
watershed algorithm [19] and DDMCMC [20]. However,
Ncut [17] based segmentation approaches generally
require high computation complexity. It is difficult to
segment a natural image into meaningful regions using
the mean shift method due to the number and shape of
the unknown data cluster. The watershed algorithm [19]
often causes a set of over-segmentation problems. The
DDMCMC [20] method suffers from the heavy computa-
tion burden. Liu and Tao [44] presented an iteratively
unsupervised image segmentation algorithm based on the
multiphase multiple piecewise constant model and its
graph cuts optimization. Four-Color theorem is used to
relabel the regions in an image after every iteration
process, which makes it possible to represent and segment
an arbitrary number of regions in image with only four
phases. However, using only color information to describe
color-texture objects will generate some small and scatter
regions without any visual sense.

The main idea of this paper is to develop an automatic
image segmentation method using object star shape prior
constraint and salient point detection technology. In [15],
the user needs to select a point inside the object as the
foreground seed which is the star center at the same time.
Given this seed, the system integrates a star shape prior
with the graph cuts algorithm to get accurate segmenta-
tion of images. Based on [15,16] extends single star center
into multiple stars. Consequently, if the star centers can be
found automatically, we can easily devise an automatically
unsupervised segmentation algorithm. We notice that, in
recent years, salient point technique has been widely
employed in many applications [21–23] due to its great
advantages such as abundant information, simple calcula-
tion and a small amount of data. In order to achieve the
automatic image segmentation, we use the salient point
detection method to try to obtain the star centers of the
image objects. What needs to be considered is that these
points should be inside the object. However, the existing
salient point detection methods have the defect that the
detected salient points appear both in the foreground and
background. While this is acceptable in some applications,
here it is crucial to find the salient points that faithfully
exist inside the object, so that the star model method can
extract the objects in an image. To achieve this goal, we
design a strategy to automatically locate the star centers
of the object that has a star shape and ensure they are
inside the objects. Firstly, the salient points in the image
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are detected by the Harris salient point detection method
[29]. Then the salient region detection approach [31] is
employed to reduce the distribution of salient points.
Secondly, the salient key points are extracted as the star
centers. Because a saliency map is the fuzzy region of the
object, there may be some salient region points not
belonging to the object region. The AP clustering [32] is
used to limit the salient key points within the object. Thus
the star centers are obtained. Finally, we consider the
obtained star centers as the foreground seeds and inte-
grate the star shape prior into the graph cuts algorithm to
achieve automatic segmentation.

The block diagram of our proposed unsupervised image
segmentation algorithm is given in Fig. 1. Firstly, the Harris
salient points are extracted from the original images in (b).
At the same time the salient region and its binary result by
an adaptive threshold segmentation method are obtained
in (c) and (d). Combining the Harris salient points in (b)
and the saliency mask in (d) the salient region points are
obtained in (e). And then salient key points are extracted
by AP clustering in (f). The salient key points are consid-
ered as the star centers of the objects and are integrated
into graph cuts segmentation framework to get the final
segmentation results in (g).

The remainder of the paper is organized as follows. For
the explanation of the proposed algorithm, we first briefly
review the results of [15,16], as well as the graph cuts
model with the star shape constraint in Section 2. An
algorithm to select the salient key points automatically is
presented in Section 3. Section 4 shows the experimental
results of the proposed method. Finally, brief conclusions
are drawn in Section 5.
Fig. 1. Block diagram of our automatic image segmentation method. (a) Original i
(d) is the binary image of (c) by using an adaptive threshold segmentation metho
clustering of (e). (g) Final segmentation result using the graph cuts method wit
2. Star shape prior for graph cuts

Shape priors have been incorporated into the graph
cuts segmentation model in a variety of ways to improve
the segmentation performance. However, some of these
methods are quite restrictive on the shape of the object,
such as the elliptical prior [13] and compact shape prior
[14]. Other techniques need to build a shape model firstly
through statistical training of segmented objects, and
then attempt to find the segmentation that best fits the
shape model. These requirements restrict their application
[11,12]. However, the star shape we are going to illustrate
is very generic and abundant in real nature scenes. In this
section we begin with a clear definition of the star shape
and then introduce the graph cuts model. Finally, we
show how to impose the star-convexity constraint on the
segmentation.

The star-convex set is a mathematical concept defined
in the geometry and math communities [33,34]. Veksler
[15] first used such set as a shape prior and introduced it
into the graph cuts segmentation. Now, we give its under-
standable definition. Intuitively, if one thinks of y as a
region surrounded by a wall, y is a star shape if one can
find a vantage point c fromwhich any point p in y is within
line-of-sight (see Fig. 2(a)). We use 1 and 0 as the object
and background labels respectively, and ypis the label of
pixel p and yq is the label of pixel q, where ypA{0,1} and
yqA{0,1}. According to the definition of y, the star con-
straints are written as the following energy function:

8qAΓc;p; E
n

p;qðyp; yqÞ ¼
1 if yp ¼ 1 and yq ¼ 0
0 otherwise

�
;

mage. (b) Harris salient point detection result. (c) Salient region result and
d. (e) Salient points on the saliency cut map. (f) Salient key points after AP
h the star shape prior provided based on (f).



Fig. 2. (a) Object y (in green) in the image domain is a star shape if we can find a center (red dot c) of the object satisfying the condition: to any point p in
the object, the point q that lies between c and p is also in the object. In another words, if you are standing at c, you can see all the places in y without
occlusion. (b) We treat O as the set of centers. 8pAy, it should be visible to its nearest center noted by c(p). (a) Single star and (b) multi star.
(For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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EnðyjcÞ ¼ ∑
pAΩ

∑
qAΓc;p

En

p;qðyp; yqÞ; ð1Þ

where Γc,p is the straight line from c to p. In the practical
application, Ω is the discrete image domain. The paths Γc,p

are the rasterization of continuous lines. Points p and q
correspond to image pixels and (p, q) implies the neigh-
boring pixel pair. In implementation, as [15,16], we also
select the point q among 8-connected neighboring pixels
(p, q) and calculate the energy directly in the discrete
domain.

Gulshan [16] extended a single star to multiple stars for
the purpose of expanding the application of the star shape
prior (see Fig. 2(b)). The key step is to extend the single
center c to an infinite set of centers O, and simultaneously
the straight line Γc,p connecting star center c to p is
extended to the set of lines ΓO,p connecting star centers
O to p. Use the mathematical formula for expression:

cðpÞ ¼ arg min
cAO

dðc; pÞ;ΓO;p ¼ ΓcðpÞ;p: ð2Þ

whertae d(c,p) is the Euclidean distance from c to p, and c
(p) is the nearest center to p. The shortest straight line
from p to the center set O is denoted by ΓO,p. According to
[16], every point p in y should be visible to its nearest
center. Then replace the Γc,p in the energy function in
Eq. (1) with ΓO,p. The expression becomes

EnðyjOÞ ¼ ∑
pAΩ

∑
qAΓO;p

En

p;qðyp; yqÞ: ð3Þ

The above discussions are based on the Euclidean
space. In order to further extend the visibility and reduce
the number of center points, [16] proposed the geodesic
stars by extending the shortest paths ΓO,p from the straight
Euclidean rays into geodesic paths. In the discrete domain,
the shortest geodesic paths ΓO,p are expressed as follows:

ΓO;p ¼ arg min
ΓAPO;p

LðΓÞ; ð4Þ

where PO,p denotes a set of all discrete paths between a set
of points c and the point p, L(Γ) is the length of a discrete
path, the parameter rg controls the weight between the
geodesic and Euclidean for computing the star shape
energy. In our experiment, we set rg¼0.3 for all images.

LðΓÞ ¼ ∑
n�1

i ¼ 1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1�rgÞdðΓi;Γiþ1Þ2þrg J∇IðΓiÞJ2

q
: ð5Þ

To calculate the path, we use the information provided
by gradients in the underlying image. In the section, when
we define the discrete path, we use fΓ1;Γ2;⋯;Γng to
denote the n pixels. The notations Γi and Γiþ1 are used
to imply the continuing pixels and iA[1,n�1]. Here n is
the number of pixels and Γ is the parametric expression of
the discrete path. Here d(Γi,Γiþ1) denotes the Euclidean
distance between pixels and ||∇I(Γi)||2 denotes the finite
difference approximation of the image gradient between
the points (Γi,Γiþ1). The parameter rg controls the weight
between the geodesic and Euclidean. Due to the introduc-
tion of the underlying image, the star energy En(y|O) is
rewritten as En(y|x,O). The notation x expresses the image
we are processing. We can express the energy as in Eq. (3)
with the shortest paths given by Eq. (4). More details can
be found in [16].

The graph cuts segmentation model is chosen in this
paper as [15,16] do. The energy function used for segmen-
tation in [8] is usually given by

EðyjxÞ ¼ ∑
iAΩ

UðyijxÞþλ ∑
ði;jÞAN

Vðyi; yjjxÞ; ð6Þ

where x is the image, Ω denotes the set of all pixels,
N denotes the set of neighboring pixel-pairs and λ is the
weight parameter. The data term U(yi|x) measures the
consumption of assigning the label yi to pixel i, while V
(yi,yj|x) measures the cost of assigning the labels yi and yj
to the adjacent pixels i, j.

Then the star shape prior En(y|x,O) is combined with
the graph cuts segmentation. With the constraints, the
energy function in Eq. (6) becomes

EðyjxÞ ¼ ∑
iAΩ

UðyijxÞþλ ∑
ði;jÞAN

Vðyi; yjjxÞþγEnðyjx;OÞ; ð7Þ

y¼ arg min
yASnðOÞ

EðyjxÞ; ð8Þ

where Sn(O) denotes all the star shapes that put O as the
center, the parameter λ is a weight on boundary term
V(yi,yj|x) in the energy function in Eq. (7), we set λ¼150
and γ¼10 for all images. The minimum value of the energy
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function in Eq. (7) corresponds to the best segmentation.
Our goal is to find the star-convex y which satisfies the
energy function in Eq. (8). With the shape prior, the
segmentation result is more accurate. However, the major
limit is that the centers of the object need to be provided
by the user. If these points can be found automatically, we
can then develop an automatic image segmentation algo-
rithm without user interactions.
3. Automatic salient key points generation

Salient points are commonly employed in a wide
variety of applications, including stereo matching, image
retrieval and object recognition. Great efforts have been
made to investigate salient point detection. There are three
main methods to guide the detection process: contour
based, parametric model based methods and intensity
based [24]. Image contour based methods [25,26] detect
the object edge and then calculate salient points using the
geometric features along the image edge. The result of this
detection algorithm depends heavily on the image con-
tour, which leads to the poor precision. Parametric model
methods define salient points based on the image match-
ing degree with the template. For example, Rohr [27]
proposed a model associated with the L-corner. Due to
the need of template, the application is limited to specific
types of salient points. Image intensity based methods
detect salient points by directly calculating the pixel
values. Moravec [28] developed a salient point detector
based on the auto-correlation function. Harris and Ste-
phens [29] improved the Moravec's method by using the
auto-correlation matrix. For Smith and Brady (SUSAN
detector), salient points are pixels that have few neighbors
with similar values [30]. Localization accuracy is one of the
most often used criterions to evaluate salient points
[24,35]. There are many different salient point detection
approaches seeking for locating all salient points as accu-
rate as possible in the image. What special attention
should be paid to is that here we are not characterizing
the image by the information of salient points purely, but
using them as clues to the star shape constraints based on
the graph cuts segmentation. Therefore, we must elim-
inate the unnecessary salient points outside the object for
the sake of accurate segmentation.
Fig. 3. Given an input image (a). Salient points generated by the Harris detecto
using the Otsu threshold method [45]. Salient region points (e). Salient key po
In this section, we will introduce the salient key point
extraction method which integrates the classical Harris
salient point detection algorithm, salient region extraction
algorithm [31] and AP clustering [32] technologies.
With this method, the salient points of an image can be
effectively limited inside the object.

3.1. Salient region points

3.1.1. Salient points detector
The salient key point extraction method first applies a

salient point detection algorithm on the image. Many
different approaches to detecting salient points have been
proposed and here we select the Harris salient point
detection method. Harris salient point detector [29] and
its variations [36,37] are the typical salient point detection
techniques currently employed in many computer vision
applications [38]. Fig. 3(b) shows examples of salient
points detected by Harris.

3.1.2. Saliency map
Visual saliency is the perceptual quality that makes an

object outstanding its neighbors and thus captures our
attention. More recently, a local contrast based salient
region detection method has been proposed in [31]. We
choose this salient region detection algorithm in [31] to
get the saliency map for that the method is fast and easy to
deal with a large number of images. In addition, this
algorithm yields the full resolution and uniformly high-
lighted salient regions, thus we can keep almost all salient
points inside the object. On the contrary, if one method
produces higher saliency values at object edges instead of
generating maps that uniformly cover the whole object,
we will miss many significant points in the object. The
proposed automatic segmentation method is a little bit
similar to the segmentation algorithm in [31]. In [31], they
use the saliency map to replace the manually selected
rectangular region to locate the object, and then extend
the interactive method GrabCut to an automatic method.
Our proposed method designs a strategy to automatically
locate the star centers of the object that has star shape,
considers the obtained star centers as the foreground
seeds, and integrates the star shape prior into the graph
cuts algorithm to achieve automatic segmentation. Fig. 3
(c) shows one example of saliency map by [31].
r [29] (b). Salient region result [31] (c) and (d) is the binary image of (c) by
ints (f) produced by the AP clustering which are all in the object.
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3.1.3. Saliency mask
After getting the saliency map, a threshold segmentation

is applied to the saliency map to get the binary map i.e., the
saliency mask. Instead of selecting the threshold empirically
[31], we automatically segment the saliency map by using an
adaptive threshold segmentation method, i.e., the Otsu
method [45], where the segmentation threshold is dynami-
cally determined by maximizing the variance between the
target and background. After processing the RC saliency map
by the Otsu method, the pixel with a saliency value higher
than the threshold is assigned to 1 while the pixel with a
lower saliency value is assigned to 0. Therefore, a salient
mask is obtained from the RC saliency map. The bright part
in the binary image in Fig. 3(d) is the salient mask.

3.1.4. Salient region points
We then place the salient mask on the image with the

initial salient points obtained by the Harris salient point
detection method [29,36,37] to obtain the salient region
points (SRP). Assuming SP denotes the set of initial salient
points and M represents the saliency mask obtained by the
Otsu method. Then the salient region points SSRP can be
obtained according to the following formula:

SSRP ¼ SP \ M: ð9Þ
The blue points in Fig. 3(e) are the salient region points

set SSRP.

3.2. Salient key points by the AP clustering

To exploit the star shape prior in [15,16], we need to
constrain the salient points inside the object. Although
most of the obtained salient region points above are inside
the object which is expected to be segmented out, still
some of them are distributed over the background. Notice
that the star shape prior method is exactly sensitive to the
points outside the object. Our experiments show that
the performance of this method in [16] will seriously
degenerate when there are a few points which are placed
outside the object.

The special process we applied to the image is the AP
clustering technology. The AP clustering [32] is based on
the affinity propagation and tries to identify each cluster
by its exemplar, instead of the virtual geometrical center.
The aim of the AP clustering is to find the best set of
representative points for the class, maximizing the value of
the sum of the similarity between the point and its nearest
representative point. And then the exemplars of the salient
region points can be used as the centers of the star shape.
The main reasons for us to apply the AP clustering
algorithm to detect the salient key points lies in three
folds: (1) the clustering number need no’t be given in prior
and the clustering centers will be generated depending on
the given points set; (2) the AP clustering algorithm
benefits to keep the salient key points inside the object,
which is extremely important to the succeeding graph cuts
segmentation; and (3) the clustering centers obtained by
the AP clustering have good distributions over the object
and can effectively represent the object.

The method is carried out based on the similarity matrix
formed by the data, and in this paper we choose the
Euclidean distance as the test index of the similarity. The
AP clustering updates the responsibility and availability of
data points by iteration constantly, and the iterative process
stops when the iteration times exceed the default threshold
or the clustering centers do not change any more. For all
images in our experiments, the maximum number of itera-
tions is set as 1000. When we apply the AP clustering to
salient region points, the remaining clustering centers are the
salient key points. Fig. 3 shows one example how to use the
AP clustering to find the salient key points.

4. Experiments comparison and analysis

In this section, we evaluate the performance of our
proposed automatic segmentation on a set of images used
in [31]. In the graph cuts segmentation framework, the
border of the image is fixed to be the background seeds as
in [15] and the extracted salient key points are treated as
the foreground seeds. Some qualitative analyses of seg-
mentation results will be reported later.

We first introduce a number of parameters that must
be appropriately determined for the implementation of
the proposed method. Although some of these parameters
have been described in the related algorithms, here we
still give the settings of all the parameters for the point of
clarity and integrity. In Harris salient point detection
progress of the Harris salient point detection method, we
set the threshold which is used to compute the corner
response function given in Eq. (10) as one percent of the
maximum value. In the salient region detection process,
following the original paper of Cheng [31], we use the
region-based contrast (RC) method, as well as its para-
meters setting. When implementing the AP clustering
algorithm, the preference P which controls the number
of the clustering center is chosen as min/2 for all images in
our experiments, and the maximum number of iterations
is set as 1000. We use the parameters setting in [16] for
the implementation of the star shape constraint algorithm.

In order to demonstrate the superior performance of our
proposed salient key point detection method, other three
salient points detection algorithms are chosen in the follow-
ing experiments for comparison, including the Harris salient
point detector [29], SUSAN operator [30] and the Gilles
method [39] (see Fig. 4). The results show that the salient
points detected by other three classic methods distribute
on both the foreground and background regions of the
image, and the situation becomes worse when the back-
ground is complex (see column 1 of Fig. 4). Comparatively,
the proposed salient key point detection algorithm is well
suitable for the application cases here. All the extracted
salient points are well-distributed inside the objects, which
can be regarded as the important object clue of the graph
cuts segmentation with the star shape prior.

4.1. The comparison between AP clustering and k-means for
salient key points detection

The results in Fig. 5 show the process of our proposed
salient key point detection method. Especially, we analyze
the superiority of the AP clustering in this algorithm
compared with the traditional k-means method.



Fig. 4. Visual comparison of salient points. (First row) Original images. (Second row) Harris salient point detection results [29]. (Third row) Salient points
produced using [30]. (Fourth row) Salient point detection results of Gilles [39]. (Fifth row) Salient key point detection result by our proposed method.
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Given the images in Fig. 5, we first extract the salient
points (Fig. 5(a)) using the Harris detector [29], and get
the saliency map (Fig. 5(b)) with the method in [31].
The segmentation result of the saliency map by the Otsu
algorithm is shown in Fig. 5(c). The salient region points
are extracted in Fig. 5(d). From the results, we can see that
in the background region most of the salient points in the
background are removed and only a small quantity of
salient points is left. We further exploit the AP algorithm
to cluster the salient region points. The red points in Fig. 5
(e) are the clustering centers obtained by the AP algorithm.
We can see that the generated salient key points are all
inside the object and can effectively represent the dis-
tribution of the object. This is extremely important to the
succeeding graph cuts segmentation with the star shape
prior. The results in Fig. 5(f) are the segmentation based on
the salient key points in Fig. 5(e) by the graph cuts
segmentation with the star shape prior. Comparatively,
the (g) and (h) in Fig. 5 are respectively the salient key
points obtained by the k-means and the corresponding
segmentation results. From the comparative results we can
see that the salient key points obtained by the AP cluster-
ing are inside the objects and then their corresponding
segmentation results by the graph cuts segmentation with
the star shape prior are very good. But not all the salient
key points obtained by the k-means algorithm are inside
the objects and some of them are in the background, so
their corresponding segmentation results are worse than
the results in Fig. 5(f).

4.2. The comparison with saliency based image
segmentation methods

In Fig. 6, the comparative experiments are provided to
demonstrate the performance of the proposed automatic
image segmentation. In each figure, (a), (b), (c), (d) and (e)
are respectively the original test images, the salient point
detection results by the Harris algorithm, the salient
region points, the salient key points and the segmentation
results of our proposed automatic segmentation. The (f)
and (g) are the RC-based saliency maps and RC-based
saliency cut results (RCC) in [31]. The (h) are the interac-
tion segmentation results of [15] with a user click, and the
(i) are the segmentation results of [16] which expanded a
single star to multiple geodesic stars with multiple user
clicks. The (j) are the Ground truths.



Fig. 5. (a) Original image and salient points. (b) Salient region. (c) Binary image of (b) by using the Otsu method. (d) Salient region points. (e) Salient key
points produced by the AP clustering. (f) Segmentation results with star shape constraints based on (e). (g) Salient key points produced by the k-means
clustering. (h) Segmentation results with star shape constraints based on (g). (For interpretation of the references to color in this legend, the reader is
referred to the web version of this article.)
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We compare our proposed method with [15] which
needs user to select the star center and with [16] which
is the improvement of [15]. From the comparison results, we
can find that lots of segmentation results of [15] (see Fig. 6
(h)) appear to be seriously under-segmented, and our results
are much better than those in [15]. However, although the
interactive segmentation method in [16] can choose the user
clicks arbitrarily, our proposed automatic method can almost
obtain the same good results as in [16] (see the (e) and (i)
in Fig. 6). Taking the papaya image in row 11 of Fig. 6 for
instance, our proposed method can automatically segment
the whole papaya accurately while the method in [15] can
just roughly segment the papaya seed region. That is because
the method of [15] uses only one user click as the foreground
clue, which cannot sufficiently provide the foreground color
information, and it can only segment out the middle seed
region in the papaya image because the papaya seed region
has also satisfied the star shape constraints. Our approach
can accurately segment the whole papaya region as [16]
does. Considering that the proposed method is an automatic
segmentation method, not interactive, the proposed method
is more promising in practical application than [16].

Because evaluation methodologies were highly subjec-
tive and greatly dependent on intuition, there is not a
single correct outcome for an image. To objectively mea-
sure the quality of our segmentation results, we have
chosen a recently proposed evaluation metric called the
probabilistic rand index (PRI) [40,41]. This technique is
very generic and is not application specific like some of the
earlier ones [42] modeled to account for variability in the
human perception. The PRI allows the comparison of a test
segmentation result to a set of ground-truth segmentation
results through a soft non-uniform weight of pixel pairs as
a function of the variability in the ground truth set. For the
purpose of better explaining the experiment results, we
also show the quantitative comparisons of the global
consistency error (GCE) [43] and the variation of informa-
tion (VOI) [44]. GCE measures the extent to which one
segmentation can be viewed as a refinement of other
segmentations that are related and in this manner are
considered to be consistent, since they could represent the
same natural image segmented at different scales. VOI
defines the distance between two segmentations as the
average conditional entropy of one segmentation result
given the other, and thus roughly measures the amount of
randomness in one segmentation result.

In order to better demonstrate the superiority of
our method, we give the quantitative comparisons of the



Fig. 6. Comparisons of the segmentation results. (a) Original test images. (b) Salient point detection results by the Harris algorithm. (c) Salient region
points. (d) Salient key points. (e) Segmentation results of our proposed automatic segmentation. (f) Rc-based saliency maps [31]. (g) RC-based saliency cut
results (RCC) [31]. (h) Interaction segmentation results of [15] with a user click. (i) Segmentation results of [16] which expanded a single star to geodesic
stars. (j) Ground truths.
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Fig. 7. Quantitative comparisons of the PRI, GCE and VOI for our approach and the original interactive segmentation method [15,16], and the automatic
segmentation method RCC [31]. The tested images are provided from Figs. 1–6. (a) PRI, (b) GCE and (c) VOI are values of four methods. The distributions of
PRI, GCE and VOI are shown in (d), (e) and (f) respectively.

Table 1
Average values of the PRI, GCE and VOI achieved on images in Figs. 1–6.

Methods Ours [15] [16] [31]

PRI 0.9685 0.8097 0.9732 0.8895
GCE 0.0269 0.0887 0.0220 0.0581
VOI 0.3344 0.6774 0.3207 0.4322
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PRI, GCE and VOI for our approach and three compared
methods including the RCC method in [31] and the inter-
active segmentation method in [15,16]. Corresponding to the
segmentation results in Figs. 1–6, the quantitative compar-
isons of the PRI, GCE and VOI for three compared approaches
are displayed in Fig. 7. From the curves in Fig. 7, for most of
images in Figs. 1–6, we can observe that the average PRI
values of our approach are higher than those of methods in
[15,31] and slightly lower than those of the method in [16].
And the GCE values of our approach are almost all lower
than those of methods in [15,31], and slightly higher than
those of the method in [16]. The VOI values of our approach
are lower than those of the method [15], and slightly higher
than those of the method in [16]. Though some of the VOI
values of our approach are higher than those of the method
[31], to analyze the VOI distribution in Fig. 7(f), we can
observe that the VOI values of our approach mainly dis-
tribute on the lower value area. Since the method [16] is an
interactive method where the salient key points are selected
by users, it is not surprising that the method [16] has the
best performance. The distributions of the PRI, GCE and VOI
in Fig. 7(d), (e) and (f), respectively, show that our approach
has a bigger percentage in the location with the large PRI,
low GCE and VOI values. In addition, for the purpose of
further demonstrating the superior performance of our
approach, we also show the average values of the PRI, GCE
and VOI in Table 1. For instance, the mean (PRI, GCE, and
VOI) values of our approach are (0.9685, 0.0269, 0.3344), and
those of methods in [15,16,31] are (0.8097, 0.0887, 0.6774),
(0.9732, 0.0220, 0.3207) and (0.8895, 0.0581, 0.4322) respec-
tively. These statistics indicate that, in the experiments used
in this paper, our approach can acquire the higher accuracy
than the compared methods in [15,31] and is a little worse
than [16].

We do exhaustive experiments to evaluate the pro-
posed method on several benchmark datasets. MSRA-1000
dataset [53] and MSRA-5000 dataset [54] are commonly
used in saliency detection methods. THUS-10000 is the
dataset used in [31]. Imgsal-50 is a subset of the Imgsal
dataset [56] and comprises 50 images with large salient
objects for evaluation. We also test the proposed method
on PASCAL VOC2012 dataset [55], which contains compli-
cated images with multiple objects. These datasets contain
human-labeled foreground mask as ground truth for seg-
mentation evaluation.

For a given segmentation result, we adopt two criteria
to evaluate the quantitative performance of different
approaches: at first step, we compute the intersection-
over-union score (VOC score) which is standard in PASCAL
VOC challenges as follows:

R¼ Rfgd \ GTfgd

Rf gd [ GTfgd
; ð10Þ

where Rfgd and GTfgd are the areas of segmented fore-
ground and the marked ground truth, respectively.

In the second step, we compute the F-measures as

Fβ ¼ ð1þβ2ÞPrecision� Recall
β2 PrecisionþRecall

; ð11Þ

where we set β2¼0.3 as in [31].
The comparison results between the proposed algo-

rithm and RCC [31] on different datasets are shown
in Fig. 8. From the results we can see that for the several
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datasets the proposed algorithm is better than RCC [31].
We also do quantitative experiments on the 1500 images
dataset provided by [59]. We compare our results with
the results by [31,53,59] with three criteria, precision,
recall rate and F-measure. The quantitative comparison
of the results is shown in Fig. 9. F-measure is computed as
Eq. (11) and we also set β2¼0.3 as in [59]. From the results,
we can see that the performances by the proposed
method, RCC [31] and GGSIM [59] are close while better
than FT [53] and GSIM [59].
4.3. The comparison with different saliency detection
algorithms

Our proposed segmentation algorithm is based on the
extracted salient key points. Therefore, the saliency detec-
tion step has important influence on the final segmenta-
tion result. We choose the saliency detection algorithm in
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Fig. 8. Statistical comparisons between the RCC [31] method and our
proposed method on the datasets MSRA-1000 [53], MSRA-5000 [54],
THUS-10000 [31], Imgsal-50 [56] and VOC2012 [55]. We adopted the VOC
score to evaluate the performance of the two methods.
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Fig. 9. Precision-recall bars for the results of [31,53,59] and
[31] for its good performance and competitive computa-
tional efficiency. In Figs. 10 and 11, we conduct the
comparison experiments to test the segmentation perfor-
mance of the proposed algorithm framework when differ-
ent saliency detections are used. Six saliency detection
algorithms, the algorithm by Jiang et al. [50], the algorithm
by Zhang and Sclaroff [49], the algorithm by Li et al. [51],
the algorithm by Yang et al. [48], the algorithm by Yan
et al. [46], the algorithm by Siva et al. [47], the algorithm
by Cheng et al. [57] and the algorithm Jiang et al. [58] are
chosen to compare with Cheng et al. [31]. From the final
segmentation results in Fig. 10 we can see that almost all
the saliency detection algorithms can get the same seg-
mentations. Since [31] is fast and easy to deal with a large
number of images, we adopted [31] as the salient region
detection method in our proposed algorithm framework.
The statistical comparisons of different salient region
detection algorithms in the proposed framework on the
MSRA-1000 dataset [53] are shown in Fig. 11. We do an
exhaustive comparison with the state-of-the-art saliency
methods by two evaluation criterions: VOC score and
F-measure. Result shows that the results are slightly
different when different salient region detection methods
are used.

4.4. The comparison with different automatic segmentation
algorithms

In Figs. 12, 13 and 14, we compare the proposed
segmentation method with the other automatic segmen-
tation methods such as the Ncut method [17] and the
diffusion segmentation method [52] in terms of the
segmentation performance and computational efficiency.
Some results are illustrated in Fig. 12, where the clustering
number is set K¼4 in the Ncut method [17] for best
performance and the clustering number is set K¼2 in
the diffusion segmentation [52] for best performance.
The comparison results in Fig. 12 show that the pro-
posed segmentation method performs best. The statistical
comparisons of the average VOC score among the pro-
posed method, RCC [31], Ncut [17] and the Diffusion
[62] GGSIM[62] SRAPC

the proposed method over the 1500 images dataset [59].



Fig. 10. Comparisons with some latest open source salient region detection methods. (a) Original images. (b) Ground truth. From (c)–(i) is SRAPC using (c)
Jiang et al. [50], (d) Zhang and Sclaroff [49], (e) Li et al. [51], (f) Yang et al. [48], (g) Yan et al. [46], (h) Siva et al. [47], (i) Cheng et al. [57], (j) Jiang et al. [58]
and (k) Cheng et al. [31].
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Fig. 11. Statistical comparisons of different salient region detection methods' performance in the proposed method on the MSRA-1000 dataset [53]. We do
an exhaustive comparison with state of the art saliency methods by two evaluation criterions: VOC score and F-measure. Result shows that our method is
slightly different when the salient region detection method changes.
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segmentation method [52] on MSRA-1000 dataset are
shown in Fig. 13, which demonstrate the superior perfor-
mance of the proposed algorithm to the three compared
algorithms in [17,31,52]. The average time cost comparison
among the proposed methods, RCC [31], Ncut [17] and the
diffusion segmentation method [52] on MSRA-1000 data-
set is shown in Fig. 14. The result shows that the proposed
algorithm is slightly slower than RCC [31] while faster than
Ncut [17] and the diffusion segmentation [52].

4.5. Experiment on multiple-object image

We also provide the visual experiments on more challeng-
ing cases with images selected from PASCAL VOC2012 dataset



Fig. 12. Comparisons by the proposed method with the Ncut in [17] and the Diffusion segmentation method in [52]. (a) Original test images with the
salient key points (star centers). (b) Segmentation results of the proposed automatic segmentation. (c) Partitioning results by directly applying the Ncut
method with K¼4. (d) Segmentation results by [52] with K¼2.

Ours RCC[31] Ncuts[17] Diffusion[53]
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

V
O

C
 s

co
re

Fig. 13. The performance comparison by the average VOC score for the
proposed method, RCC [31], Ncut [17] and the Diffusion segmentation
method [52] on MSRA-1000 dataset.
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Fig. 14. The average time cost comparison for the proposed method, RCC
[31], Ncut [17] and the Diffusion segmentation method [52] on MSRA-
1000 dataset.
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[55] and the iCoseg dataset [60]. As can be seen, our approach
(shown in Fig. 15) can deal well with the challenging cases
which are complicated images and multiple-objects images.
From the results we can see that the proposed method can
effectively extract the salient foreground objects from the
images. However, as the proposed method segments each
image into only two phases, the foreground and the back-
ground just like [31,59] do, although the algorithm can
extract all the salient foreground objects, multiple different
objects in image are hard distinguished with each other.
We also compare the proposed method with the automatic
segmentation algorithms [17,52] on the images in Fig. 15. The
comparison results show that the proposed method preforms
better than [17,52]. We do more quantitative experiments as
shown in Fig. 8 in the PASCAL VOC2012 dataset [55], which
contains a large number of multiple-object images. The results
show that the proposed algorithm is better than RCC [31].

5. Conclusion and discussion

In this paper, we present an automatic image segmenta-
tion method integrating salient points with the star shape
constraint based on the graph cuts framework. We con-
structed an automatic object star center extraction method
by combining the salient region extraction with the AP
clustering technology. Then the obtained star centers are
regarded as the foreground seeds and the star shape prior is
integrated into the graph cuts algorithm to achieve automatic
segmentation. The experiment evaluation and comparison



Fig. 15. Some examples from VOC dataset [55] (8 images on the left) and iCoseg [60] (4 images on the right) which include multiple objects. (a) Original
images, (b) Ground truth, (c) Segment results with the proposed method, (d) Segment results with Ncut (K¼4) [17] and (e) Segment results by [52] with
K¼2.
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with the other state-of-the-art algorithms on several publicly
available datasets has emphasized the good performance of
the proposed algorithm.

The proposed method is based on the salient points
or region detection. And then the salient key points are
extracted for star shape prior. Lastly the graph cuts algorithm
based on star shape prior constraint is used to get the final
segmentation. Hereby, the proposed method is limited by the
extracted salient key points. If the extracted salient key
points can cover only one object then the algorithm can
segment out one object. While if the salient key points can
cover two or multiple objects the algorithm can segment out
two or multiple objects. However, most of the existing
saliency detection algorithms are concentrated on single
object. Therefore, the proposed algorithm has the limitation
to deal with multi-object segmentation. The saliency detec-
tion for multiple objects is an interesting and challenging
topic. We will conduct some research and hope to get some
results in the near future.
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